• Users Online: 126
  • Print this page
  • Email this page

Table of Contents
Year : 2019  |  Volume : 7  |  Issue : 2  |  Page : 83-84

Virtual reality applications in orthopaedics

1 Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
2 Department of Orthopaedics, Indraprastha Apollo Hospital, New Delhi, India
3 Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, India

Date of Submission12-Jul-2019
Date of Acceptance23-Aug-2019
Date of Web Publication13-Dec-2019

Correspondence Address:
Dr. Mohd Javaid
Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/joas.joas_37_19

Rights and Permissions

How to cite this article:
Haleem A, Javaid M, Vaishya R, Khan IH. Virtual reality applications in orthopaedics. J Orthop Spine 2019;7:83-4

How to cite this URL:
Haleem A, Javaid M, Vaishya R, Khan IH. Virtual reality applications in orthopaedics. J Orthop Spine [serial online] 2019 [cited 2021 Jul 24];7:83-4. Available from: https://www.joas.org.in/text.asp?2019/7/2/83/272907


Virtual reality (VR) is a three-dimensional (3D) software-generated world, by which a person can see computer-generated reality, like the model creating a virtual world, through wearing specially designed glasses and pieces of equipment. This technology has potential to assist different procedures in the field of orthopaedics, where it can provide a collaborative development to improve the quality of health, treatment, and its reports.[1]

The meaning of Virtual (near) and Reality (experience of a human being) implies a “reality of anything.” VR provides sensory information with a computer-generated virtual environment and helps to interact in a 3D world, with the help of digital display. It creates an immersive and believable experience to explore a virtual world or computer-generated world. Using scientific visualization, the human/audience can interact with these images or virtually created objects.[2] It is a fully immersive experience as it can convince the user to an artificial environment where they suspend their belief of real world and engage in the simulation. Different components of VR are head-mounted displays, immersive rooms, data gloves, and wands. It consists of different angled and multifunctional cameras, which creates a virtual environment or a second set of reality.

The components of VR interact with the virtual and real world to minimize the time of the treatment and orthopaedics surgery and thereby make it possible to experience it anywhere, anytime.[3] VR is an immersive type of reality to convince human brain like actual practice to perform the surgery. Working steps of VR in medical as well as in orthopaedics are as given below:

  • The VR of surgery using glasses and cameras
  • Learning, practice, and training machine learning involved
  • Generation of an innovative concept
  • Performing surgery.

First, VR helps to see the actual performance of surgery and helps the doctor to learn, practice, and generate new concepts and better methods. VR is an appropriate technique for the training of medical students in the operating room and helps to reduce errors and enhance their skills for surgery. VR combines real world using advanced display digital technique to provide preoperative planning information. This technology allows surgeons a proper visualization, which helps achieve correct alignment and placement of implants during orthopaedics surgery.

In orthopaedics, VR may be utilized effectively to perform clinical trials and may also provide useful feedback during orthopaedics, trauma, and knee replacement surgery and provides information at remote for virtual training.[2] Doctors and surgeon can solve different problems to improve the health of their patients through different applications of VR in orthopaedics [Table 1].
Table 1: Major applications of virtual reality in orthopaedics

Click here to view

In orthopaedics, this digital technology is used to perform simulation of a complex fractured bone, which is helpful to perform better surgery. It also helps an orthopaedics surgeon to understand the complicated surgical procedure and treat the fractured bone. It is the principle of practice that allows the surgeon to see an actual patient pathology in real life.[4]

Martin et al., 2016 used VR for multiple instructional modules to facilitate training and education.[1] In another case, Li et al., 2017 used this technology in clinical medicine and this has exclusive use for pain management, surgical training, and treatment. The study shows that doctors and patients take full benefits of this technology.[5] Stirling et al., 2014 used VR to minimize risk in the safety of the patient, financial expenditure, and operating theater usage. It provides simulated prosthetic models and seems efficient 3D software tool.[6]

The main limitations of VR are in being cost (hardware and software) and are complex to use and train. Doctors need training before performing an actual VR-based surgery. Thus, to gain real-world experience, VR allows doctors and surgeons to take a virtual risk as it is based on interpersonal connections for individual communication. Sometimes, it does not offer that level of flexibility as the same program is repeated in a VR headset.[7]

It is hoped that VR will play a significant role for surgeons, doctors, trainees, and scientists. It will provide the most significant development for high precision surgery. Machine learning can also be implemented effectively for a higher degree of precision, analysis of previous surgery and record, providing with the details, on which doctors and surgeons can practice and learn the surgical procedure to performed better operations.[8] It develops a simulated environment to enhance the method of orthopaedics surgery. This technology will become cheaper and provide reality to communicate all procedure of orthopaedics and provides an experience of anything in anytime where required.[9]

VR is a modern tool which provides easy access, cost-effective, and safe technology and uses virtual information to create revolutionary innovation for various surgical procedures. In upcoming years, VR should create a positive impact in the field of orthopaedics.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Martin KD, Akoh CC, Amendola A, Phisitkul P. Comparison of three virtual reality arthroscopic simulators as part of an orthopedic residency educational curriculum. Iowa Orthop J 2016;36:20-5.  Back to cited text no. 1
Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma 2019;10:615-6.  Back to cited text no. 2
Mabrey JD, Reinig KD, Cannon WD. Virtual reality in orthopaedics: Is it a reality? Clin Orthop Relat Res 2010;468:2586-91.  Back to cited text no. 3
Padilla-Castañeda MA, Sotgiu E, Barsotti M, Frisoli A, Orsini P, Martiradonna A, et al. An orthopaedic robotic-assisted rehabilitation method of the forearm in virtual reality physiotherapy. J Healthc Eng 2018;2018:7438609.  Back to cited text no. 4
Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, et al. Application of virtual reality technology in clinical medicine. Am J Transl Res 2017;9:3867-80.  Back to cited text no. 5
Stirling ER, Lewis TL, Ferran NA. Surgical skills simulation in trauma and orthopaedic training. J Orthop Surg Res 2014;9:126.  Back to cited text no. 6
Akhtar K, Sugand K, Sperrin M, Cobb J, Standfield N, Gupte C. Training safer orthopedic surgeons. Construct validation of a virtual-reality simulator for hip fracture surgery. Acta Orthop 2015;86:616-21.  Back to cited text no. 7
Andersen C, Winding TN, Vesterby MS. Development of simulated arthroscopic skills. Acta Orthop 2011;82:90-5.  Back to cited text no. 8
Ahmed MA, Khalifa AA. Orthopaedic surgeons and smartphones. Int J Recent Surg Med Sci 2019. [doi: 10.1055/s-0039-1692599].  Back to cited text no. 9


  [Table 1]

This article has been cited by
1 Virtual reality (VR) applications in dentistry: An innovative technology to embrace
Abid Haleem,Mohd. Javaid,IbrahimHaleem Khan
Indian Journal of Dental Research. 2020; 31(4): 666
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
Article Tables

 Article Access Statistics
    PDF Downloaded120    
    Comments [Add]    
    Cited by others 1    

Recommend this journal