• Users Online: 207
  • Print this page
  • Email this page


 
 
Table of Contents
ORIGINAL ARTICLE
Year : 2022  |  Volume : 10  |  Issue : 1  |  Page : 1-5

Blood flow restriction therapy to restore quadriceps wasting persistent after anterior cruciate ligament reconstruction


Department of Orthopaedics, Dr SN Medical College, Jodhpur, Rajasthan, India

Date of Submission18-Oct-2021
Date of Acceptance23-Aug-2022
Date of Web Publication24-Nov-2022

Correspondence Address:
Dr. Shubham Agarwal
Department of Orthopaedics, Dr SN Medical College, 88/3, Vijay Bari, Sikar Road, Jaipur 302023, Rajasthan
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JOASP.JOASP_58_21

Rights and Permissions
  Abstract 

INTRODUCTION: Anterior cruciate ligament (ACL) is the most commonly injured ligament in the knee that requires surgical intervention. After ACL reconstruction, it has been reported that quadriceps wasting can persist for years even after complete rehabilitation and aggressive physiotherapy. Blood flow restriction (BFR) therapy is proposed to induce muscle growth and improve strength in chronic muscle atrophy. But the data on the efficacy of BFR therapy are controversial and lacking in the existing literature. AIMS/OBJECTIVES: In this study, we focus on identifying the patients having chronic quadriceps wasting after ACL reconstruction and intervene to restore the quadriceps wasting using BFR therapy. MATERIALS AND METHODS: All the participants had unilateral reconstruction of ACL tear >1 year back and completed the standard postoperative rehabilitation protocol but had >10% of difference in quadriceps thickness in the involved limb as compared to contra-lateral limb measured by ultrasonography. They were then proceeded further with BFR therapy and were re-examined after 6 weeks of BFR therapy. RESULTS: It was observed that 64% of the participants had persistent quadriceps muscle atrophy even after 1 year of completing standard post-rehabilitation protocol after ACL reconstruction with more than 10% deficit. The quadriceps thickness observed after the BFR therapy increased by 10 ± 7% at one-third of femur length from knee joint and 16.6 ± 4% at two-thirds of femur length in the involved extremity but did not show any change in uninvolved extremity. Post-training quadriceps femoris symmetry index also increased in the involved extremity compared to the baseline (87 ± 5% pre-procedure to 96 ± 4% post-procedure, P <0.01). CONCLUSION: This study concludes that BFR therapy after knee surgery may be a viable modality for the treatment of residual atrophy of quadriceps after years of ACLR. This can be used in patients who require extra assistance in resisting muscle atrophy or building muscle strength.

Keywords: Atrophy treatment, chronic wasting, quadriceps atrophy, rehabilitation


How to cite this article:
Jain H, Agarwal S, Raichandani K, Vaishy A. Blood flow restriction therapy to restore quadriceps wasting persistent after anterior cruciate ligament reconstruction. J Orthop Spine 2022;10:1-5

How to cite this URL:
Jain H, Agarwal S, Raichandani K, Vaishy A. Blood flow restriction therapy to restore quadriceps wasting persistent after anterior cruciate ligament reconstruction. J Orthop Spine [serial online] 2022 [cited 2022 Nov 26];10:1-5. Available from: https://www.joas.org.in/text.asp?2022/10/1/1/361908




  Introduction Top


Anterior cruciate ligament (ACL) is the most commonly injured ligament in the knee that requires surgical intervention. After ACL reconstruction, it has been reported that quadriceps wasting can persist for years even after complete rehabilitation and aggressive physiotherapy. This can lead to altered gait mechanics and increase the chances of re-injury in the patients. Due to asymmetry in the quadriceps and disturbance in weight mechanics, it can also lead to the development of early osteoarthritis of the knee joint.

Blood flow restriction (BFR) therapy is proposed to induce muscle growth and improve strength in population.[1],[2],[3] Here, we occlude the venous outflow to the extremity while restricting arterial inflow using a pneumatic tourniquet followed by low resistance exercises. The anaerobic conditions are induced and act as angio-genic stimulus via vascular endothelial growth factor (VEGF). There is also a proliferation of satellite cells[4],[5] activation of type 2 muscle fibers[6],[7],[8] and recruitment of endothelial progenitor cells. Low-intensity training is an attractive method of recovery of quadriceps in postsurgical rehabilitation after ACLR.

BFR therapy is yet to be established as a conclusive method for rehabilitation as the data on the efficacy of BFR therapy is controversial and lacking in the existing literature. The purpose of this study was to evaluate the BFR therapy to increase quadriceps strength and symmetry 1 year after ACLR. We also report the safety considerations and indications for the same.

Objectives

In this study, we focus on identifying the patients having chronic quadriceps wasting after ACL reconstruction and completing the rehabilitation protocol. We will also intervene to restore the quadriceps girth using BFR therapy.


  Materials and Methods Top


The study was conducted in the Department of Orthopedics of a tertiary level health care center, for a period of 12 months from March 1, 2019 to February 29, 2020 after obtaining ethical clearance from Institutional Ethical Committee.

All the patients between the age of 18 and 45 years, with ACL complete tear operated arthroscopically, with semi-tendinosus and gracilis graft used for reconstruction, and those giving consent to participate in the surgery were included. All the participants had unilateral reconstruction of ACL tear >1 year back and completed the standard postoperative rehabilitation protocol but had >10% of difference in quadriceps thickness in involved limb as compared to contralateral limb.

We excluded the patients who had any comorbidity that can affect the muscle rehabilitation and strength such as polio, paralysis, and any condition requiring prolonged immobilization. Patients with suspected/any old episode of DVT, those having any infections postoperatively, with multi-ligaments injuries, having any injury in contra lateral knee, refusing to participate in the study, or those who did not return for proper follow-ups were also excluded from the study.

After 12 months of the surgery, the patients were evaluated for quadriceps thickness. The femur length was taken from the medial joint line to greater trochanter (GT) and divided into three equal parts by 2 points, at one-third of femur length and two-third of femur length (from knee joint). Ultrasonography (USG) (7 MHz, Aloka portable USG machine) was then performed to measure quadriceps thickness for both the limbs, that is, the involved and the contralateral limb at these two fixed points (one-third and two-thirds of femur length from knee joint). Participants were positioned supine (10° knee angle), while images of the quadriceps were taken at one-third and two-thirds of the distance from knee joint line to the greater trochanter of femur. To maintain the uniformity, the evaluation was done by a single radiologist in the department of radio diagnosis for all the patients.

These participants were informed about the therapy, informed consent was taken and proceeded further with BFR therapy [Figure 1]. A pneumatic tourniquet cuff was applied to the thigh and set to a limb occlusion pressure of 70%–80% of arterial occlusive pressure (AOP). In this study, AOP was measured using Doppler ultrasound. All the patients were then allowed to follow standard rehabilitation at the same physical therapy clinic for 40 min, three times a week. This included the following:
Figure 1: BFR tourniquet with exercises

Click here to view


  • Straight leg raise: 40 reps


  • Quad sets: 40 reps


  • Cycling: 10 min


  • Step ups: 40 reps


  • Balancing on affected limb: 5 min


  • Apart from the BFR therapy at clinic, the patients were allowed to continue the same without tourniquet at home for the other 4 days of the week.

    Thickness of the quadriceps was re-evaluated after 6 weeks of therapy in the involved and uninvolved limb using B-mode ultrasound. Symmetry index was used to compare wasting of involved and un-involved limb:




      Results Top


    Demography: We evaluated 75 patients during the course of study for the thickness of quadriceps after 1 year of ACLR. Out of 75, we found wasting of quadriceps in operated limb of >10% in 48 candidates and were included for study. The demographic profile is listed in [Table 1].
    Table 1: Demographic profile

    Click here to view


    BFR exercise

    Mean arterial occlusion pressure was observed to be 188 ± 24 mm Hg and mean occlusion pressure was accordingly taken as 132 ± 17 mm Hg. All the participants were observed to complete all the sets of rehabilitation protocols. Muscle soreness was reported by 30% of the patients during the first few sets of therapy, but it gradually reduced with subsequent therapies. None of the patients reported DVT or any nerve injuries.

    The quadriceps thickness observed after the BFR therapy increased by 10 ± 7% at 1/3 of femur length from knee joint and 16.6 ± 4% at two-thirds of femur length in the involved extremity but did not show any change in uninvolved extremity [Figure 2].
    Figure 2: Quadriceps thickness before and after BFR therapy

    Click here to view


    Post-training quadriceps femoris symmetry index [Figure 3] also increased in the involved extremity compared to the baseline (87 ± 5% pre-procedure to 96 ± 4% post-procedure, P < 0.01).
    Figure 3: Quadriceps symmetry index before and after BFR therapy

    Click here to view



      Discussion Top


    In this study, it was observed that 64% of the participants had persistent quadriceps muscle atrophy even after 1 year of completing standard post-rehabilitation protocol after ACL reconstruction. These patients had >10% difference in quadriceps thickness and asymmetry between the involved and uninvolved limb. This asymmetry long after ACLR has been previously reported by various authors in the past.[9],[10],[11] As quadriceps is responsible to maintain extensor mechanism of knee joint, its reduction leads to weak extensor strength. Also, the chances of re-injury increases due to altered gait imbalances and weight mechanics.[12],[13],[14]

    In this study, we implemented a 6 week, observed BFR program in the physiotherapy clinic for 3 days a week, consisting of bodyweight and strengthening exercises to increase the bulk as well as strength of muscle. We found that BFR therapy lead to an increase of quadriceps thickness by 10 ± 7% at one-third of femur length from knee joint and 16.6 ± 4% at two-thirds of femur length in the involved extremity but did not show any change in uninvolved extremity. This also leads to an increase in post-training quadriceps femoris symmetry index. Hence, BFR therapy after ACLR can be used for resisting the effects of disuse atrophy as well as building the strength and bulk to regain the levels equal to un-involved extremity.

    BFR therapy is hypothesized to promote muscle bulk as it induces local hypoxia. The type 1 muscle fibers cannot function in the hypoxic environment and this leads to activation of type 2 muscle fibers, thus promoting the hypertrophy of muscle.[15] It leads to the accumulation of metabolic bi-products that result in various hormonal and metabolic responses.[16] Increase in blood pooling and concentration of adrenaline and Growth hormone also leads to muscle growth.[17]

    Here we observed the quadriceps thickness at two levels, one at one-third of the femur length from knee joint line and the other at two-third from the knee joint line to rule out bias at a single level. Various other authors have used other methods for the same. Iversen et al.[18] used landmarks at 40% and 50% of femur length to record quadriceps CSA, whereas Takarada et al.[19] measured the CSA at mid-portion of femur and at the point just distal to BFR tourniquet.

    Various authors have previously reported the results of BFR therapy after knee surgery but the results are still controversial. Ohta et al.[20] in a randomized controlled trial over 16 weeks of BFR therapy and observed significant improvements in CSA of the quadriceps and extensor strength of knee. Kilgas et al.[21] in their study in 2019 implemented home-based BFR therapy several years after ACLR and reported an increase in quadriceps muscle thickness and reduced asymmetry. In a 13-day low resistance training using BFR therapy by Iverson[18] there was no difference observed in CSA of quadriceps when compared to low-resistance muscular training alone.

    Thus, BFR therapy after knee surgery may be a viable modality for the treatment of residual atrophy of quadriceps after years of ACLR. This can be used in patients who require extra assistance in resisting muscle atrophy or building muscle strength. However, due to various controversies, this is not a regular intervention in post-operative knee rehabilitation thus leading to chronic wasting of quadriceps.

    We noticed no significant side effects apart from some transient dull pain observed in the affected limb during the initial three to four therapies that settled after rest following therapy, with only 3 patients requiring nonsteroidal anti-inflammatory drug for pain relief on the day of therapy. Ohta et al.[20] reported discomfort in the participants affected extremity roughly 12 min after BFR therapy, whereas Kilgas[21] and Iversan[18] reported no significant side effects. However, in a study by Yasuda et al.[22] there were episodes of rhabdomyolysis, pulmonary emboli as well as venous thrombosis reported after BFR therapy. We did not observe any such side effects in any of the participants. Thus, Additional data are needed on the short- and long-term effects of BFR in patient populations.

    Limitations

    This study had a few limitations. In this study, we concluded short-term benefits on muscle hypertrophy after BFR therapy but did not follow up for long-term results. Also, we did not use MRI for evaluation of quadriceps thickness (standard technique for the same) as it is not affordable by the patients.

    Declaration of patient consent

    The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

    Financial support and sponsorship

    Not applicable.

    Conflicts of interest

    There are no conflicts of interest.



     
      References Top

    1.
    Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br J Sports Med 2017;51:1003-11.  Back to cited text no. 1
        
    2.
    Barber-Westin S, Noyes FR Blood flow-restricted training for lower extremity muscle weakness due to knee pathology: A systematic review. Sports Health 2019;11:69-83.  Back to cited text no. 2
        
    3.
    DePhillipo NN, Kennedy MI, Aman ZS, Bernhardson AS, O’Brien LT, LaPrade RF The role of blood flow restriction therapy following knee surgery: Expert opinion. Arthroscopy 2018;34:2506-10.  Back to cited text no. 3
        
    4.
    Gundermann DM, Walker DK, Reidy PT, Borack MS, Dickinson JM, Volpi E, et al. Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin. Am J Physiol Endocrinol Metab 2014;306:E1198-204.  Back to cited text no. 4
        
    5.
    Fry CS, Rasmussen BB Skeletal muscle protein balance and metabolism in the elderly. Curr Aging Sci 2011;4:260-8.  Back to cited text no. 5
        
    6.
    Loenneke JP, Fahs CA, Wilson JM, Bemben MG Blood flow restriction: The metabolite/volume threshold theory. Med Hypotheses 2011;77:748-52.  Back to cited text no. 6
        
    7.
    Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 1992;64:552-6.  Back to cited text no. 7
        
    8.
    Wernbom M, Augustsson J, Raastad T Ischemic strength training: A low-load alternative to heavy resistance exercise? Scand J Med Sci Sports 2008;18:401-16.  Back to cited text no. 8
        
    9.
    Krishnan C, Williams GN Factors explaining chronic knee extensor strength deficits after ACL reconstruction. J Orthop Res 2011;29:633-40.  Back to cited text no. 9
        
    10.
    Longo UG, Rizzello G, Frnaceschi F, Campi S, Maffulli N, Denaro V The architecture of the ipsilateral quadriceps two years after successful anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Knee 2014;21:721-5.  Back to cited text no. 10
        
    11.
    Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train 2015;50:303-12.  Back to cited text no. 11
        
    12.
    Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med 2014;42:302-11.  Back to cited text no. 12
        
    13.
    Øiestad BE, Holm I, Gunderson R, Myklebust G, Risberg MA Quadriceps muscle weakness after anterior cruciate ligament reconstruction: a risk factor for knee osteoarthritis? Arthritis Care Res (Hoboken) 2010;62:1706-14.  Back to cited text no. 13
        
    14.
    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 2016;50:804-8.  Back to cited text no. 14
        
    15.
    Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim JS The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res 2012;26:1724-9.  Back to cited text no. 15
        
    16.
    de Freitas MC, Gerosa-Neto J, Zanchi NE, Lira FS, Rossi FE Role of metabolic stress for enhancing muscle adaptations: Practical applications. World J Methodol 2017;7:46-54.  Back to cited text no. 16
        
    17.
    Bevegard S Studies on the regulation of the circulation in man. With special reference to the stroke volume and the effect of muscular work, body position and artificially induced variations of the heart rate. Acta Physiol Scand Suppl 1962;57:1-36.  Back to cited text no. 17
        
    18.
    Iversen E, Røstad V, Larmo A Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci 2016;5:115-8.  Back to cited text no. 18
        
    19.
    Takarada Y, Takazawa H, Ishii N Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000;32:2035-9.  Back to cited text no. 19
        
    20.
    Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand 2003;74:62-8.  Back to cited text no. 20
        
    21.
    Kilgas MA, Lytle LLM, Drum SN, Elmer SJ Exercise with blood flow restriction to improve quadriceps function long after ACL reconstruction. Int J Sports Med 2019;40:650-6.  Back to cited text no. 21
        
    22.
    Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 2011;111:2525-33.  Back to cited text no. 22
        


        Figures

      [Figure 1], [Figure 2], [Figure 3]
     
     
        Tables

      [Table 1]



     

    Top
     
      Search
     
        Similar in PUBMED
       Search Pubmed for
       Search in Google Scholar for
     Related articles
        Access Statistics
        Email Alert *
        Add to My List *
    * Registration required (free)  

     
      In this article
    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    References
    Article Figures
    Article Tables

     Article Access Statistics
        Viewed136    
        Printed0    
        Emailed0    
        PDF Downloaded31    
        Comments [Add]    

    Recommend this journal